Abstract

NO is related to the pathological condition acute renal failure, in which we previously observed that the level of soluble dipeptidase in urine was decreased. In this study the role of NO in the shedding of the glycosylphosphatidylinositol (GPI)-anchored form of renal dipeptidase (RDPase) was examined. The NO donors sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine rapidly inhibited the release of RDPase from porcine kidney proximal tubules. The substrate of NO synthase, l-Arg, also inhibited the release of RDPase, and this effect was reversed by the NO synthase inhibitor N(omega)-nitro-l-arginine methyl ester. Western-blot analyses using antibodies raised against porcine RDPase and the inositol-1,2-cyclic monophosphate moiety formed on phospholipase C cleavage of the GPI anchor demonstrated that SNP mediated its inhibitory effect on the release of RDPase via a GPI-specific phospholipase C (GPI-PLC). Peroxynitrite scavengers (deferoxamine and superoxide dismutase) or reducing agent (dithiothreitol) did not affect SNP's inhibition of the release of RDPase. Exposure to the G-protein activator AlF(-)(4) mimicked the l-Arg effect in the presence of a low concentration of l-Arg, and the effect was completely reversed by U73122, an intracellular phosphatidylinositol-specific PLC (PI-PLC) inhibitor. These results suggest a signal-transduction pathway involving NO, which is produced by NO synthase(s) following activation of a G-protein-coupled PI-PLC, resulting in inhibition of the GPI-PLC that cleaves and releases RDPase. Therefore, this indicates a role for NO as an inhibitory regulator of the shedding of the GPI-anchored RDPase in acute renal failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.