Abstract

Herpes simplex virus type 1 (HSV-1) has the ability to replicate in neurons and glial cells and to produce encephalitis leading to neurodegeneration. Accumulated evidence suggests that nitric oxide (NO) is a key molecule in the pathogenesis of neurotropic virus infections. NO can exert both cytoprotective as well as cytotoxic effects in the central nervous system (CNS) depending on its concentration, time course exposure, and site of action. In this study, we used an in vitro model of HSV-1-infected primary neuronal and mixed glial cultures as well as an intranasal model of HSV-1 in BALB/c mice to elucidate the role of NO and nonapoptotic Fas signalling in neuroinflammation and neurodegeneration. We found that low, nontoxic concentration of NO decreased HSV-1 replication in neuronal cultures together with production of IFN-alpha and proinflammatory chemokines. However, in HSV-1-infected glial cultures, low concentrations of NO supported virus replication and production of IFN-alpha and proinflammatory chemokines. HSV-1-infected microglia downregulated Fas expression and upregulated its ligand, FasL. Fas signalling led to production of proinflammatory cytokines and chemokines as well as induced iNOS in uninfected bystander glial cells. On the contrary, NO reduced production of IFN-alpha and CXCL10 through nonapoptotic Fas signalling in HSV-1-infected neuronal cultures. Here, we also observed colocalization of NO production with the accumulation of β-amyloid peptide in HSV-1-infected neurons both in vitro and in vivo. Low levels of the NO donor increased accumulation of β-amyloid in uninfected primary neuronal cultures, while the NO inhibitor decreased its accumulation in HSV-1-infected neuronal cultures. This study shows for the first time the existence of a link between NO and Fas signalling during HSV-1-induced neuroinflammation and neurodegeneration.

Highlights

  • Herpes simplex virus type 1 (HSV-1) causes a contagious infection that affects approximately 60% to 95% of adults worldwide

  • To ascertain the susceptibility of HSV-1 replication in cell cultures to NO, sodium nitroprusside (SNP) was used as an exogenous NO donor at the concentration range of 1000-50 μM and aminoguanidine sulphate (AMG) at the concentration of 50 μM was used as an inhibitor of inducible nitric oxide synthase

  • AMG had no effect upon HSV-1 replication in C8-1A astrocytes, while it significantly inhibited HSV-1 replication in mixed glial cells (p = 0 02) (Figure 1(b))

Read more

Summary

Introduction

Herpes simplex virus type 1 (HSV-1) causes a contagious infection that affects approximately 60% to 95% of adults worldwide. HSV-1 is associated mainly with infections of the mouth, pharynx, face, eye, and central nervous system (CNS). The virus persists in the body by becoming latent in the cell bodies of nerves after the primary infection. People infected with HSV-1 can expect to have several (typically four or five) outbreaks (symptomatic recurrences) within a year. Herpes simplex encephalitis (HSE) predominantly affects children and the elderly, is one of the most common forms of viral encephalitis, and has remarkably poor outcomes despite the availability of good antiviral therapy [3,4,5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call