Abstract

Nitric oxide (NO) is synthesized in all kingdoms of life, where it plays a role in the regulation of various physiological and developmental processes. In terms of endogenous NO biology, fungi have been less well researched than mammals, plants, and bacteria. In this review, we summarize and discuss the studies to date on intracellular NO biosynthesis and function in fungi. Two mechanisms for NO biosynthesis, NO synthase (NOS)-mediated arginine oxidation and nitrate- and nitrite-reductase-mediated nitrite reduction, are the most frequently reported. Furthermore, we summarize the multifaceted functions of NO in fungi as well as its role as a signaling molecule in fungal growth regulation, development, abiotic stress, virulence regulation, and metabolism. Finally, we present potential directions for future research on fungal NO biology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.