Abstract

The sequence of events leading to the programmed cell death (PCD) induced by heavy metals in plants is still the object of extensive investigation. In this study we showed that roots of 3-day old yellow lupine (Lupinus luteus L.) seedlings exposed to cadmium (Cd, 89μM CdCl(2)) resulted in PCD starting from 24h of stress duration, which was evidenced by TUNEL-positive reaction. Cd-induced PCD was preceded by a relatively early burst of nitric oxide (NO) localized mainly in the root tips. Above changes were accompanied by the NADPH-oxidase-dependent superoxide anion (O(2)(·-)) production. However, the concomitant high level of both NO and O(2)(·-) at the 24th h of Cd exposure did not provoke an enhanced peroxynitrite formation. The treatment with the NADPH-oxidase inhibitor and NO-scavenger significantly reduced O(2)(·-) and NO production, respectively, as well as diminished the pool of cells undergoing PCD. The obtained data indicate that boosted NO and O(2)(·-) production is required for Cd-induced PCD in lupine roots. Moreover, we found that in roots of 14-day old lupine plants the NO-dependent Cd-induced PCD was correlated with the enhanced level of the post-stress signals in leaves, including distal NO cross-talk with hydrogen peroxide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.