Abstract
Soil emission of nitric oxide may be a significant source of NOx in rural areas. Agricultural practices may enhance these emissions by addition of nitrogen fertilizers. A system that enables continuous measurement of NO fluxes from agricultural surfaces using the flux‐gradient method was developed. Hourly differences in NO concentrations in air sampled at two intake heights (0.6 and 1 m) were determined using a chemiluminescence analyzer. Eddy diffusivities were determined using wind profiles (cup anemometers), and stability corrections calculated using a 5 cm path sonic anemometer. Fast switching of sampling between air intake heights (every 30 s) and determination of concentration values at a frequency of 2 Hz minimized the errors due to fluctuations in background concentration. Low travel times for air samples in the tubing (∼8 s) were estimated to result in small errors in flux values (<0.5 ng N m−2 s−1) due to chemical reactions. The overall resolution of the system was estimated as ∼1 ng N m−2s−1. NO fluxes from a bare soil were measured quasi‐continuously from January to June 1995 at Elora, Canada, comprising a total of 1833 hourly values. Daily NO fluxes before nitrogen fertilization were small, increasing after nitrogen fertilizer was added (>10 ng N m−2 s−1). Monthly NO fluxes estimated were similar to those observed in previous studies. The designed system could be easily modified to measure NOx and NO fluxes by using an additional chemiluminescence analyzer. The system also could be adapted to measure fluxes sequentially from various plots, enabling testing of agricultural practices on NO emissions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.