Abstract

Cyclic-3′,5′-guanosine monophosphate (cGMP) mediates the intracellular signaling cascade responsible for the nitric oxide (NO) initiated relaxation of vascular smooth muscle (VSM). However, the temporal dynamics, including the regulation of cGMP turnover, are largely unknown. Here we report new mechanistic insights into the kinetics of cGMP synthesis and hydrolysis in primary VSM cells by utilizing FRET-based cGMP-indicators [A. Honda, S.R. Adams, C.L. Sawyer, V. Lev-Ram, R.Y. Tsien, W.R. Dostmann, Proc. Natl. Acad. Sci. U S A 98 (5) (2001) 2437.]. First, 2-(N,N-Diethylamino)-diazenolate 2-oxide (DEA/NO) and 2,2′-(Hydroxynitrosohydrazono)-bis-ethanimine (DETA/NO) induced NO-concentration dependent, transient cGMP responses (“peaks”) irrespective of their rates of NO release. The kinetic characteristics of these cGMP peaks were governed by the concerted action of the NO-sensitive guanylyl cyclase (GC) and phosphodiesterase type V (PDE5) as shown by their respective inhibition using 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and Sildenafil. These responses occurred in the presence of moderately elevated cGMP (5–15% FRET ratio), and thus activated PKG and phosphorylated PDE5, suggesting a prominent role for GC in the maintenance and termination of cGMP peaks. Furthermore, cGMP transients could be elicited repeatedly without apparent desensitization of GC or by suppression of cGMP via long-term PDE5 activity. These results demonstrate a continuous sensitivity of the NO/cGMP signaling system, inherent to the phasic nature of smooth muscle physiology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.