Abstract

Poor permeation of therapeutic agents and multidrug resistance (MDR) in solid tumors are the two major challenges that lead to the failure of the current chemotherapy methods. Herein, a zero‐waste doxorubicin‐loaded heparin/folic acid/l‐arginine (HFLA‐DOX) nanomotor with motion ability and sustained release of nitric oxide (NO) to achieve deep drug penetration and effective reversal of MDR in cancer chemotherapy is designed. The targeted recognition, penetration of blood vessels, intercellular penetration, special intracellular distribution (escaping from lysosomes and accumulating in Golgi and nucleus), 3D multicellular tumor spheroids (3D MTSs) penetration, degradation of tumor extracellular matrix (ECM), and reversal of MDR based on the synergistic effects of the motion ability and sustained NO release performance of the NO‐driven nanomotors are investigated in detail. Correspondingly, a new chemotherapy mode called recognition‐penetration‐reversal‐elimination is proposed, whose effectiveness is verified by in vitro cellular experiments and in vivo animal tumor model, which can not only provide effective solutions to these challenges encountered in cancer chemotherapy, but also apply to other therapy methods for the special deep‐tissue penetration ability of a therapeutic agent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call