Abstract
The reaction of a cobalt porphyrin complex, [(F8TPP)Co], 1 {F8TPP = 5,10,15,20- tetrakis(2,6-difluorophenyl)porphyrinate dianion} in dichloromethane with nitric oxide (NO) led to the nitrosyl complex, [(F8TPP)Co(NO)], 2. Spectroscopic studies and structural characterization revealed it as a bent nitrosyl of {CoNO}8 description. It was stable in the presence of dioxygen. However, it reacts with H2O2 in acetonitrile (or THF) solution at -40 °C (or -80 °C) to result in the corresponding Co(III)-nitrate complex, [(F8TPP)Co(NO3)], 3. The reaction presumably proceeds via the formation of a Co-peroxynitrite intermediate. X-Band electron paramagnetic resonance and electrospray ionization-mass spectroscopic studies suggest the intermediate formation of the [(porphyrin)Co(III)-O•] radical, which in turn supports the generation of the corresponding Co(IV)-oxo species during the reaction. This is in accord with the homolytic cleavage of the O-O bond in heme-peroxynitrite proposed in the nitric oxide dioxygenases activity. In addition, the characteristic peroxynitrite-induced phenol ring reaction was also observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.