Abstract
The possible modulation by the endothelium of the contractile responses to sympathetic nerve stimulation was examined in isolated superfused human saphenous vein. Contractile response curves for transmural nerve stimulation and noradrenaline were higher in endothelium-denuded than in intact human saphenous vein rings. In vessels with endothelium, transmural nerve stimulation- and noradrenaline-induced contractions were unaffected by the cyclooxygenase inhibitor, indomethacin (10 μM), but were potentiated by the nitric oxide (NO) synthase inhibitor, l- N θ-nitro- l-arginine ( l-NNA, 3 μM) even when combined with d-arginine (0.3 mM), but not with l-arginine (0.3 mM). As in the case of noradrenaline, contractile responses to 5-HT, but not to KCl, were enhanced by endothelium removal, l-NNA or l-NNA plus d-arginine, but were unaffected by l-NNA plus l-arginine. The guanylyl cyclase inhibitor, methylene blue (10 μM), potentiated both transmural nerve stimulation- and noradrenaline-induced contractions in endothelium intact rings, whereas it enhanced, although to a lesser degree, only the neurally evoked contractions in endothelium-denuded human saphenous vein. In the vessels without endothelium l-NNA failed to affect the vasoconstriction induced by both transmural nerve stimulation and noradrenaline. Our results suggest that at least two inhibitory factors are involved in modulating the sympathetic vasoconstriction in the human saphenous vein: (1) at a postjunctional level, NO, the release of which from endothelial cells is probably stimulated by the activation of specific receptors, and (2) at a prejunctional level, an unidentified vasodilator agent, which is unmasked by the removal of the endothelium layer and which is probably co-released along with noradrenaline, and which acts through the guanylyl cyclase pathway.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.