Abstract
A differential emission measure technique is used to determine flare spectra using solar observations from the soft X-ray instruments aboard the Thermosphere Ionosphere Mesosphere Energetics Dynamics and Solar Radiation and Climate Experiment satellites. We examine the effect of the solar flare soft X-ray energy input on the nitric oxide (NO) density in the lower thermosphere. The retrieved spectrum of the 28 October 2003 X18 flare is input to a photochemical thermospheric NO model to calculate the predicted flare NO enhancements. Model results are compared to Student Nitric Oxide Explorer Ultraviolet Spectrometer observations of this flare. We present results of this comparison and show that the model and data are in agreement. In addition, the NO density enhancements due to several flares are studied. We present results that show large solar flares can deposit the same amount of 0.1–2 and 0.1–7 nm energy to the thermosphere during a relatively short time as the Sun normally deposits in one day. The NO column density nearly doubles when the daily integrated energy above 5 J m −2 is doubled.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.