Abstract
In the present study, we quantified the physiological consequences of nitric oxide (NO) on ammonium release in tadpoles of Xenopus laevis. Tadpoles exposed to S-nitro-N-acetylpenicillamine (SNAP), an NO-donor, or L: -arginine, the substrate of NO synthase (NOS), showed a reversible decrease, whereas animals exposed to the NOS inhibitor Nomega-methyl-L: -arginine (L: -NMMA) exhibited an increase in ammonium release. Release of ammonium may be of physiological relevance during stress response of the animal. Handling of tadpoles as well as exposure to hyposmotic environments increased ammonium release. To localize NO synthesizing cells, we used diaminofluorescein-diacetate (DAF-2DA), an NO-sensitive fluorescent dye, and NADPH-diaphorase histochemistry, an indicator for NOS activity. We observed a fluorescence signal as well as NADPH-diaphorase activity in small, solitary cells in the epidermis. Similarly to NADPH-diaphorase histochemistry, silver nitrate staining and rhodamine labelling, markers for mitochondria-rich cells, showed a strong reaction in these cells. These observations indicate that NO (1) inhibits ammonium release, and (2) is endogenously synthesized in mitochondria-rich cells in Xenopus tadpoles. Based on our histochemical results, we speculate that gill epithelium and epidermis work in parallel to release ammonium as epidermal tissue contains mitochondria-rich and NADPH-diaphorase positive cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.