Abstract

Nitrate and ammonium are major inorganic nitrogen sources for plants and algae. These compounds are assimilated by means of finely regulated processes at transcriptional and post-translational levels. In Chlamydomonas, the expression of several genes involved in high-affinity ammonium (AMT1.1, AMT1.2) and nitrate transport (NRT2.1) as well as nitrate reduction (NIA1) are downregulated by ammonium through a nitric oxide (NO)-dependent mechanism. At the post-translational level, nitrate/nitrite uptake and nitrate reductase (NR) are also inhibited by ammonium, but the mechanisms implicated in this regulation are scarcely known. In this work, the effect of NO on nitrate assimilation and the high-affinity ammonium uptake was addressed. NO inhibited the high-affinity uptake of ammonium and nitrate/nitrite, as well as the NR activity, in a reversible form. In contrast, nitrite reductase and glutamine synthetase activities were not affected. The in vivo and in vitro studies suggested that NR enzyme is inhibited by NO in a mediated process that requires the cell integrity. These data highlight a role of NO in inorganic nitrogen assimilation and suggest that this signalling molecule is an important regulator for the first steps of the pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.