Abstract

Nitric oxide (NO*) is known to exert its effects via guanylyl cyclase and cyclic GMP-dependent pathways and by cyclic GMP-independent pathways, including the posttranslational modification of proteins. Much ongoing research is focused on defining the mechanisms of NO*-mediated protein modification, the identity and function of the modified proteins, and the significance of these changes in health and disease. S-nitrosation or thionitrite formation has only been found on a limited number of residues in a subset of proteins in in vitro and in vivo studies. Protein S-nitrosation also appears to be reversible. There are several theories about the in vivo S-nitrosating agent, and most suggest a role for oxidation products of NO* in this process. Flux in cellular S-nitrosoprotein pools appears to be regulated by NO* availability and is redox-sensitive. An analysis of S-nitrosation in candidate proteins has clarified the mechanism by which NO* regulates enzymatic and cellular functions. These findings suggest the utility of using proteomic methods to identify unique targets for protein S-nitrosation to understand further the molecular mechanisms of the effects of NO*.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.