Abstract

The burden of hypertension in the United States is increasing and yields significant morbidity and mortality, and sex differences in hypertension are widely recognized. Reduced nitric oxide (NO) bioavailability and increased oxidative stress are known to contribute to the pathogenesis of hypertensive renal injury, and but their contributions to sex differences in injury progression of are undefined. Our purpose was to test the hypothesis that male hypertensive rats have accelerated renal injury compared to females and to determine the contributions of the nitric oxide pathway and oxidative stress in these differences. Male and female Dahl SS/Jr rats, a model that spontaneously develops hypertension with age, were allowed to age on a 0.3% NaCl diet until 3 or 6 months of age, at which points blood pressure was measured and plasma, tissue, and urine were collected. While no significant sex differences in blood pressure were present at either time point, renal injury measured by urine protein excretion was more severe (male = 44.9 ± 6; female = 15±3 mg/day/100 g bw, p = .0001), and renal function was reduced (male = 0.48 ± 0.02; female = 0.7 ± 0.03 ml min‐1 g‐1 kw, p = .001) in males compared to females with age. Both male and female rats exhibited reduced nitric oxide metabolites (3 months: male = 0.65 ± 0.1; female = 0.74 ± 0.3; 6 months: male = 0.16 ± 0.1; female = 0.41 ± 0.1 ml min‐1 g‐1 kw, p, age = 0.02, p, sex = 0.3). Levels of urinary TBARS were similar (3 months: male = 20±1.5; female = 23±1.8; 6 months: male = 26±4.8; female = 23±4.7µM day g‐1 kw, p, age = 0.4, p, sex = 0.9), extracellular superoxide dismutase (EC SOD) mRNA was greater in females (3 months: male = 0.35 ± 0.03; female = 1.4 ± 0.2; 6 months: male = 0.4 ± 0.05; female = 1.3 ± 0.1 normalized counts, p, age = 0.7, p, sex < 0.0001), but EC SOD protein expression was not different (3 months: male = 0.01 ± 0.002; female = 0.01 ± 0.002; 6 months: male = 0.02 ± 0.004; female = 0.01 ± 0.002 relative density, p, age = 0.2, p, sex = 0.8). These data support the presence of significant sex differences in renal injury and function in the Dahl S rat and identify a need for further study into the mechanisms involved.

Highlights

  • Hypertension is a major contributor to morbidity and mortality worldwide

  • The salient findings from this study show that there is a disparate degree of renal injury between male and female Dahl S rats despite similar systolic blood pressure (BP) between sexes

  • We have shown attenuated renal injury and maintenance of renal function in female offspring supported by lower proteinuria and kidney injury marker-1 (KIM-1) excretion, in addition to a lack of decline in creatinine clearance by 6 months of age, as compared to age-matched male rats

Read more

Summary

Funding Information

This research was supported by the National Institutes of Health under award numbers R01HL134711 (J.M. Sasser), F30DK118864 (H.R. Turbeville), and R01HL137673 (M.R. Garrett). The work performed through the UMMC Molecular and Genomics Facility is supported, in part, by funds from the NIGMS, including Mississippi INBRE (P20GM103476), Obesity, Cardiorenal, and Metabolic Diseases- COBRE (P20GM104357), and Mississippi Center of Excellence in Perinatal Research (MS-CEPR)-COBRE (P20GM121334). The content is solely the responsibility of us and does not necessarily represent the official views of the National Institutes of Health.

| INTRODUCTION
| METHODS
Findings
| DISCUSSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call