Abstract

The present study aims to analyse the potential crosstalk between nitric oxide (NO) and hydrogen sulfide (H2S) in triggering resilience of maize (Zea mays L.) seedlings to hexavalent chromium (Cr VI). Exogenous application of 500 μM sodium nitroprusside (SNP, as a NO donor) or sodium hydrosulfide (NaHS, as a H2S donor) to 9-day-old maize seedlings, countered a Cr (200 μM) -elicited reduction in embryonic axis biomass. Cr caused cellular membrane injury by enhancing the levels of superoxide and hydroxyl radicals as well as methylglyoxal, and 4-hydroxy-2-nonenal. The application of SNP or NaHS considerably improved the endogenous NO and H2S pool, decreased oxidative stress and lipid peroxidation by suppressing lipoxygenase activity and improving some antioxidant enzymes activities in radicles and epicotyls. Radicles were more affected than epicotyls by Cr-stress with enhanced electrolyte leakage and decreased proton extrusion as indicated by lesser H+-ATPase activity. H2S appeared to mitigate Cr toxicity through up-regulated H+-ATPase and glyoxalase pathways and by maintaining optimal GSH levels as downstream effects of ROS and MG suppression. Hence, H2S-mediated the regeneration of GSH pool is associated with the attenuation of MG toxicity by enhancing S-lactoglutathione and D-lactate production. Taken together, our results indicate complementary roles for H2S and GSH to strengthen membrane integrity against Cr stress in maize seedlings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call