Abstract
Glomerulonephritis is a common clinical condition that is caused by immune-mediated injury to the kidney and is characterized by dysfunction of the glomerular capillary filtration barrier. Nitric oxide (NO), a ubiquitous molecule with many biological functions throughout the body, has been evaluated as an inflammatory mediator in these circumstances. NO may induce glomerular injury directly or may act via stimulation of a host of other inflammatory mediators. A variety of experimental models of glomerulonephritis have been studied including those induced by infusion of antibodies to the Thy1.1 antigen or glomerular basement membrane, Heymann nephritis, and autoimmune nephritis. In virtually all of these cases there is evidence of increased NO production. Excessive production of NO by inducible nitric oxide synthase (iNOS), derived from infiltrating immune cells or resident glomerular cells, nearly always is associated with increased glomerular injury. Interventions that inhibit this enzyme result in less proteinuria and diminished glomerular damage. In contrast, NO derived from endothelial nitric oxide synthase (eNOS) may limit glomerular disease by preserving endothelial cell integrity. There are only a limited number of studies that have evaluated the impact of NO in patients with glomerulonephritis. Although the bulk of evidence supports a role of NO as a pro-inflammatory mediator in glomerulonephritis, additional work is needed to show an association between altered NO production and the severity and outcome of disease in patients with this disease. It is hoped that better understanding of the role of NO in glomerulonephritis will lead to the development of therapies to ameliorate the disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.