Abstract

We tested the hypothesis that nitric oxide and carbon monoxide, which are produced in the brain by nitric oxide synthase (NOS) and heme oxygenase (HO), modulate the hypothalamic-pituitary-adrenal response to physico-emotional stressors by acting at the hypothalamus. Accordingly, we determined 1) whether the intracerebroventricular (icv) injection of NOS or HO inhibitors at doses that were confined to the brain attenuated electroshock-induced ACTH release; and 2) whether the decreases in this ACTH response were concurrent with decreases in NOS or HO activity levels at the hypothalamus. Icv injection of the NOS inhibitor Nω-nitro-l-arginine-methylester (L-NAME; 50 μg) or the HO inhibitor tin protoporphyrin (SnPP; 20–25μ g) significantly blunted the plasma ACTH response to a 45-min session of intermittent electroshocks. Importantly, in these same animals there were concurrent decreases in hypothalamic NOS or HO activities, respectively. There were little or no effects of these inhibitors on anterior pituitary NOS or HO activities, indicating that there was only minimal leakage of the drug from the brain after icv administration. The specificity of action of these inhibitors was confirmed by the fact that SnPP did not affect NOS activity, and L-NAME did not affect HO activity. Finally, L-NAME produced no effect, whereas SnPP produced only transient increases in blood pressure, suggesting that these inhibitors do not affect activity indirectly through alterations in blood pressure. These data support the hypothesis that in the whole animal, both NO and CO exert a stimulatory influence on the acute ACTH response to physico-emotional stressors, and that the hypothalamus is the critical site of their actions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call