Abstract
Nitric oxide (NO) is a lipophilic, highly diffusible and short-lived physiological messenger which regulates a variety of important physiological responses including vasodilation, respiration, cell migration, immune response and apoptosis. NO is synthesized by three differentially gene-encoded NO synthase (NOS) in mammals: neuronal NOS (nNOS or NOS-1), inducible NOS (iNOS or NOS-2) and endothelial NOS (eNOS or NOS-3). All isoforms of NOS catalyze the reaction of L-arginine, NADPH and oxygen to NO, L-citrulline and NADP. NO may exert its cellular action by cGMP-dependent as well as by cGMP-independent pathways including postranslational modifications in cysteine (S-nitrosylation or S-nitrosation) and tyrosine (nitration) residues, mixed disulfide formation (S-nitrosoglutathione or GSNO) or promoting further oxidation protein stages which have been related to altered protein function and gene transcription, genotoxic lesions, alteration of cell-cycle check points, apoptosis and DNA repair. NO sensitizes tumor cells to chemotherapeutic compounds. The expression of NOS-2 and NOS-3 has been found to be increased in a variety of human cancers. The multiple actions of NO in the tumor environment is related to heterogeneous cell responses with particular attention in the regulation of the stress response mediated by the hypoxia inducible factor-1 and p53 generally leading to growth arrest, apoptosis or adaptation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.