Abstract

The involvement of nitric oxide (NO) in preventing bone loss has long been hypothesized, but despite decades of research the mechanisms remain obscure. In this issue of the JCI, Jin et al. explored NO deficiency using human cell and mouse models that lacked argininosuccinate lyase (ASL), the enzyme involved in synthesizing arginine and NO production. Osteoblasts that did not express ASL produced less NO and failed to differentiate. Notably, in the context of Asl deficiency, heterozygous deletion of caveolin 1, which normally inhibits NO synthesis, restored NO production, osteoblast differentiation, glycolysis, and bone mass. These experiments suggest that ASL regulates arginine synthesis in osteoblasts, which leads to enhanced NO production and increased glucose metabolism. After a period when research slowed, these studies, like the legendary phoenix, renew the exploration of NO in bone biology, and provide exciting translational potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.