Abstract

SummaryNitric oxide (NO) is an active molecule involved in many physiological functions in plants. To characterise the roles of NO in the tolerance of eggplant (Solanum melongena L.) to salt stress, the protective effects of exogenous sodium nitroprusside (SNP), a donor of NO, applied at different concentrations (0, 0.05, 0.1, or 0.2 mM), on plant biomass, photosynthesis, and anti-oxidant capacity were evaluated. The application of SNP alleviated the suppression of growth in eggplant under salt stress, as reflected by a higher accumulation of biomass. In parallel with growth, the application of SNP to salt-stressed plants resulted in enhanced photosynthetic parameters such as the net photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (Tr), and intercellular CO2 concentration (Ci), as well as an increased quantum efficiency of PSII (Fv/Fm), efficiency of excitation capture of open PSII centres (Fv’/Fm’), quantum yield of PSII ( psii) and photochemical quenching coefficient (qP). Furthermore, exogenous SNP also reduced significantly the rate of production of O2• – radicals and the concentrations of malondialdehyde (MDA) and H2O2. It also increased the activities of superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) in eggplant leaves grown under salt stress. The results indicated that the protective effects of NO against salt stress in eggplant seedlings were most likely mediated through improvements in photosynthetic performance and the stimulation of anti-oxidant capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call