Abstract

To assess the effect of nitric oxide (NO) on the large conductance potassium channel (BK(Ca)) in isolated circular (CM) and sling (SM) muscle cells and muscle strips from the cat lower esophageal sphincter (LES) to determine its regulation of resting tone and relaxation. Freshly enzymatically-digested and isolated circular smooth muscle cells were prepared from each LES region. To study outward K+ currents, the perforated patch clamp technique was employed. To assess LES resting tone and relaxation, muscle strips were mounted in perfused organ baths. (1) Electrophysiological recordings from isolated cells: (a) CM was more depolarized than SM (-39.7 ± 0.8 mV vs -48.1 ± 1.6 mV, P < 0.001), and maximal outward current was similar (27.1 ± 1.5 pA/pF vs 25.7 ± 2.0 pA/pF, P > 0.05); (b) The NO donor sodium nitroprusside (SNP) increased outward currents only in CM (25.9 ± 1.9 to 46.7 ± 4.2 pA/pF, P < 0.001) but not SM (23.2 ± 3.1 to 27.0 ± 3.4 pA/pF, P > 0.05); (c) SNP added in the presence of the BK(Ca) antagonist iberiotoxin (IbTX) produced no increase in the outward current in CM (17.0 ± 2.8 vs 13.7 ± 2.2, P > 0.05); and (d) L-NNA caused a small insignificant inhibition of outward K+ currents in both muscles; and (2) Muscle strip studies: (a) Blockade of the nerves with tetrodotoxin (TTX), or BK(Ca) with IbTX had no significant effect on resting tone of either muscle; and (b) SNP reduced tone in both muscles, and was unaffected by the presence of TTX or IbTX. Exogenous NO activates BK(Ca) only in CM of the cat. However, as opposed to other species, exogenous NO-induced relaxation is predominantly by a non-BK(Ca) mechanism, and endogenous NO has minimal effect on resting tone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.