Abstract
1. Ryanodine-sensitive, Ca(2+) release ('Ca(2+) sparks') from the sarcoplasmic reticulum (SR) can activate plasmalemmal Ca(2+)-activated K(+) channels (K(Ca)) to cause membrane hyperpolarization and smooth muscle relaxation. Since cyclic guanosine monophosphate (cyclic GMP) can modulate Ca(2+) spark activity, the aim of the present study was to determine if Ca(2+) spark-like events are involved in NO-dependent, NANC relaxations to electrical field stimulation (EFS) of mouse, longitudinal smooth muscle of the gastric fundus in isolated strips contracted to approximately 40% of their maximum contraction. 2. NANC relaxations to EFS were almost abolished by both the NO synthase inhibitor, N(G)-nitro-L-arginine (L-NOARG; 100 microM) and the guanylate cyclase inhibitor, 1-H-oxodiazol-[1,2,4]-[4,3-alpha] quinoxaline-1-one (ODQ; 10 microM). Also, ODQ abolished relaxations to the NO donor, sodium nitroprusside (SNP; 1 nM - 30 microM). NANC relaxations and SNP-evoked relaxations were both partly ryanodine (10 microM)- and nifedipine (0.3 microM)-sensitive, but in each case, the inhibitory effects of ryanodine and nifedipine were additive. 3. Apamin (1 microM), charybdotoxin (0.1 microM), iberiotoxin (0.1 microM), tetraethylammonium (TEA; 1 mM), glibenclamide (10 microM) and 4-aminopyridine (1 mM) had no effect on either NANC- or SNP-evoked relaxations, the latter of which were also unaffected by high extracellular K(+) (68 mM). 4. Caffeine (0.1 - 1 mM) caused concentration-dependent relaxations of gastric fundus which were inhibited by ryanodine but unaffected by L-NOARG. 5. Relaxation to ATP (30 microM) was abolished by nifedipine, partly inhibited by apamin and ryanodine, but was unaffected by L-NOARG. 6. In conclusion, the results of the present study show that nitrergic relaxations in the mouse longitudinal gastric fundus occur via a cyclic GMP-activated ryanodine-sensitive mechanism, which does not appear to involve activation of K(+) channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.