Abstract

Tyrosines can be selectively nitrated in a protein and the resultant chromophore can be used as an in situ probe of the tyrosine environment. Resonance Raman scattering could have specific advantages as a detection method because of the inherent selectivity of the technique and because shifts in the intensity and frequency of the nitro stretch can be detected and related to the form and environment of the nitrotyrosine. To evaluate this possibility the internal residue Tyr67 of cytochrome c was nitrated and resonance Raman scattering was recorded. With 413.1-nm excitation the resonance scattering from the heme protein dominates, but with 457.9-nm excitation intense bands due to nitrostretching vibrations are readily observed. The frequency of the internal Tyr67 indicates an aqueous environment that suggests that on nitration this residue becomes exposed on the protein surface or that water enters the active pocket. pH dependent measurements can be used to follow the protonation of the residue. A pK(a) of approximately 7 also indicates an aqueous environment. This initial study indicates that resonance Raman scattering does have unique advantages as an in situ probe of the local structure of nitrated tyrosine residues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.