Abstract

Heterogeneous oxidation of SO2 on mineral dust is a significant source of sulfate in the atmosphere. Given that a large fraction of nitrate is deposited on the mineral aerosols, the determination of the effect of nitrate on the SO2 oxidation on mineral dust and its in-depth mechanism are much desired. In this work, we report nitrate-enhanced SO2 oxidation on authentic mineral dust. By comparing the SO2 uptake behaviors on Arizona test dust (ATD, a typical proxy of mineral dust) with or without nitrate, we found that although nitrate hinders the initial SO2 uptake, it substantially accelerates SO2 uptake and oxidation after a pronounced induction period. In other words, a hindering-then-accelerating feature in the SO2 uptake profile was observed on nitrate-containing ATD (N-ATD) particles. In addition, HONO was released in the accelerating period as the reduction product of nitrate. The accumulation of protons (H+) from SO2 oxidation during the induction period plays a key role in the acceleration of SO2 oxidation. Our work suggests that the nitrate-participating SO2 oxidation on mineral dust can be one of the important contributions of the sulfate source in the atmosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.