Abstract

Five-or six-day old seedlings of corn (Zea mays L.) were exposed to 0.25 mm Ca(NO(3))(2), 1.0 mm sodium 2-[N-morpholino]-ethanesulfonate, 5 mug Mo per liter and 50 mug of chloramphenicol per ml at pH 6. Nitrate uptake was determined from depletion of the ambient solution. The pattern of nitrate uptake was characterized, after the first 20 minutes, by a low rate which increased steadily to a maximal rate by 3 to 4 hours. Transfer of nitrate to the xylem did not totally account for the increase. Development of the maximal accelerated rate did not occur at 3 C with excised roots nor with seedlings whose endosperm had been removed. Use of CaCl(2) rather than Ca(NO(3))(2) resulted in a linear rate of chloride uptake during the first 4 hours, and chloride uptake was not as restricted by endosperm removal as was nitrate uptake.Nitrite pretreatments or the addition of cycloheximide (2 mug ml(-1)), puromycin (400 mug ml(-1)) and 6-methylpurine (0.5 mm) restricted maximal development of the accelerated nitrate uptake rate. Actinomycin D (20 mug ml(-1)) inhibited the rate only after about three hours exposure. The RNA and protein synthesis inhibitors also restricted nitrate reductase induction in the apical segments of the root tissue. The data suggest that development of the maximal accelerated rate of nitrate uptake depended upon continuous protein synthesis, and the hypothesis that synthesis of a specific nitrate transport protein must occur is advanced. But the alternative hypothesis, i.e., that induction of nitrate reductase (and/or a consequence of the act of nitrate reduction) provided the required stimulus, remains tenable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call