Abstract

Nitrate Transporter 1.1 (NRT1.1) is a nitrate transporter and sensor that modulates plant metabolism and growth. It has previously been shown that NRT1.1 is involved in the regulation of flowering time in Arabidopsis thaliana. In this study, we mainly used genetic and molecular methods to reveal the key flowering pathway that NRT1.1 may be involved in. Mutant alleles of CO and FLC, two crucial components in the flowering pathway, were introduced into the NRT1.1 defective mutant background by crossing. When the CO mutation was introduced into chl1-5 plants, the double mutant had delayed flowering time, and the CO transcription levels did not change in the chl1-5 plants. These results indicate that the CO-dependent photoperiod may be not associated with the delayed flowering shown by chl1-5. However, FLC loss of function could rescue the late flowering phenotype of the chl1-5 mutant, and FLC expression levels significantly increased in the NRT1.1 defective mutant plants. The FT expression levels in the chl1-5flc-3 double mutant plants recovered when the FLC mutation was introduced into chl1-5 plants and the up-regulation of FLC transcripts in the chl1-5 mutant plants was not related to nitrate availability. Our findings suggest that NRT1.1 affects flowering time via interaction with the FLC-dependent flowering pathway to influence its target gene FT, and that NRT1.1 may be included in an additional signaling pathway that represses the expression of FLC in a nitrate-independent manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call