Abstract

How nitrate (NO3−) fertilization influences ciprofloxacin (CIP) uptake by crops remains unsolved. Here, two Brassica parachinensis cultivars differing in CIP accumulation were cultivated to investigate the effects of NO3− supply on CIP uptake and the underlying mechanism. The results showed that NO3− supply effectively reduced CIP toxicity and accumulation in the two cultivars, especially in the low CIP cultivar. Moreover, NO3− supply induced different mechanisms of coping with CIP stress in the two cultivars through influencing subcellular distribution of CIP. The uptake of CIP by root was demonstrated to be a carrier-mediated, energy-consuming, and proton motive force-dependent influx process. Consequently, a mechanism of nitrate supply decreasing CIP uptake was proposed that uptake of CIP and NO3- into root cell would compete for the proton motive force and share a common energy source provided by plasma membrane H+-ATPase. Besides, regulating the concentration balances of cytoplasmic NO3- and proton by inhibiting the activities of NRase and two tonoplast proton pumps (V-ATPase and V-PPase) led to opposite effect on CIP uptake, further supporting this inference. Our results provide a novel insight into CIP uptake by plant roots, and improve the strategy of minimizing CIP accumulation in crops for food safety by fertilization management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call