Abstract

Abstract Nitrate may reach surface and ground waters as a consequence of agricultural activity and discharge of domestic and industrial waste. Among the various methods used for nitrate removal, denitrification, a process in which nitrate is biologically reduced to elemental nitrogen, is relatively reliable and inexpensive as compared to other physical and chemical nitrate removal processes. Denitrification is generally conducted with biofilters in which bacteria are either immobilized to the surface of insoluble carriers or are entrapped within an immobilization matrix. We examined the use of non-toxic and biodegradable natural hydrocolloids for entrapment of denitrifying bacteria. Gel beads containing starch and alginate were used for this purpose. Three types of gel beads were examined: (1) wet gel beads; (2) porous wet gel beads; and (3) freeze-dried gel beads. With respect to nitrate removal, wet and dried gel beads showed similar removal capacities. Porous beads demonstrated an advantage over regular gel beads only during the first of the approximately 3-month incubation period. The viability of the immobilized bacteria was only slightly affected during prolonged refrigerated storage of the beads. Compared to freeze-dried beads, production costs of wet beads are significantly reduced, so it is anticipated that such carriers will eventually lead to a method that can be applied on an industrial scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call