Abstract

Electrochemical treatment of nitrate ions was attempted using different catalysts on the cathode in bioelectrochemical denitrification systems. The carbon cathode coated by biofilm (biocathode) could remove 91 % of nitrate ions at 1.0 V, which was almost same as the Pt-coated electrode (90 %). The exchange current density of biocathode was 0.0083 A/m(2), which was almost 22 times higher than with an abiotic plain carbon cathode. The formation of intermediate products in nitrate reduction varied depending on the cell voltage. At 0.5 V, a large portion of nitrate was converted to ammonia, but at more increased cell voltage (0.7 and 1 V) a high amount of nitrite ions was found with little ammonia formation in cathodic solution. The maximum nitrate removal rate was 0.204 mg NO(3)-N/cm(2)d by biocathode, while plain carbon paper showed only 0.176 mg NO(3)-N/cm(2)d. Electrochemical analysis of chronoamperometry showed a higher stable current generation for biocathode (3.1 mA) and Pt-coated cathode (2.8 mA) as compared to plain carbon (0.6 mA) at 0.7 V of poised voltage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.