Abstract
Abscisic acid (ABA), H2O2 and nitric oxide (NO) are important signals in gene expression and physiological responses during plant adaptation to environmental stresses. The essential role of NR-derived NO production in ABA and H2O2 induced antioxidant enzymes were studied using transgenic tobacco plants over-expressing Stylosanthes guianensis 9-cis-epoxycartenoid dioxygenase gene (SgNCED1) for elevated ABA level, or over-expressing wheat oxalate oxidase gene (OxO) for elevated H2O2 level in comparison to the wild type. Compared to the wild type, higher levels of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and nitrate reductase (NR) activities and NO production were observed in all transgenic plants. For investigating the relationship of ABA, H2O2, and NR-produced NO in the induction of antioxidant enzyme activities, an inhibitor of ABA biosynthesis, scavengers of H2O2 and NO, and an inhibitor of NR were used in the experiments. The results indicate that H2O2-induced activities of SOD, CAT, and APX depends on NR-derived NO in OxO transgenic plants, while ABA-induced activities depends on H2O2 and NR-derived NO in SgNCED1 transgenic plants. Compared to unaltered nitrate reductase 2 (NIA2), NIA1 transcript was induced in both types of transgenic plants. It is suggested NR-derived NO is essential for ABA- or H2O2-induced antioxidant enzyme activities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.