Abstract
Nitrate pollution is of considerable global concern as a threat to human health and aquatic ecosystems. Nowadays, δ15N/δ18O-NO3− combined with a Bayesian-based SIAR model are widely used to identify riverine nitrate sources. However, little is known regarding the effect of variations in pollution source isotopic composition on nitrate source contributions. Herein, we used δ15N/δ18O-NO3−, SIAR modeling, probability statistical analysis and a perturbing method to quantify the contributions and uncertainties of riverine nitrate sources in the Wen-Rui Tang River of China and to further investigate the model sensitivity of each nitrate source. The SIAR model confirmed municipal sewage (MS) as the major nitrate source (58.5–75.7%). Nitrogen fertilizer (NF, 8.6–20.9%) and soil nitrogen (SN, 7.8–20.1%) were also identified as secondary nitrate sources, while atmospheric deposition (AD, <0.1–7.9%) was a minor source. Uncertainties associated with NF (UI90 = 0.32) and SN (UI90 = 0.30) were high, whereas those associated with MS (UI90 = 0.14) were moderate and AD low (UI90 = 0.0087). A sensitivity analysis was performed for the SIAR modeling and indicated that the isotopic composition of the predominant source (i.e., MS in this study) had the strongest effect on the overall riverine nitrate source apportionment results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.