Abstract

In biotransformation of phytosterol to 4-androstene-3,17-dione (AD) by Mycobacterium, the steroidal alcohol (such as 22-hydroxy-23,24-bisnorchol-4-ene-3-one, HBC) was a main byproduct. To weaken the accumulation of this byproduct in sterol biotransformation, ammonium was substituted by nitrate as nitrogen resource. The nitrate was utilized by Mycobacterium and led to metabolic flux shift towards AD production. The ratio of AD/HBC increased maximally from 2.1 to 5.5 and AD production increased correspondently. In the meanwhile, the nitrate metabolism resulted in the decreased intracellular redox level (NADH/NAD+) maximally by 59.5% and a slight descent tendency with the increase of the nitrate concentrations. It indicated that the nitrate utilization effectively decreased the steroidal alcohol production by regulating intracellular redox level in sterol biotransformation. These results gave an insight into the mechanism of the steroidal alcohol formation in sterol biodegradation and provided a simple strategy to regulate the metabolic distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.