Abstract
Abstract Losses of nitrate in drainage water from disturbed forest ecosystems vary over a wide range. High losses of nitrate to streamwater or groundwater have been observed in a few sites, while in others only small increases in losses have occurred. A limited set of mechanisms could be responsible for such differences. Before disturbance, annual nitrogen mineralization and plant nitrogen uptake vary widely among temperate forests, with higher rates observed in deciduous forests. Destructive disturbance increases nitrogen mineralization and (at least briefly) reduces plant uptake. The nitrogen mineralized in excess of plant uptake could be lost to streamwater or groundwater, lost to the atmosphere through ammonia volatilization or denitrification, or retained within the disturbed system through nitrogen immobilization by decomposers, clay fixation of ammonium, lags in nitrification, nitrate reduction to ammonium, nitrate adsorption on soil colloids, a lack of water for nitrate transport, or (once plant regrowth is established) plant nitrogen uptake. Systematic studies of these mechanisms will allow the development of a more thorough understanding of the nitrogen cycle in disturbed ecosystems. Such an understanding should in turn permit the prediction of nitrate losses from distrubed forests. Forest Sci. 25:605-619.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.