Abstract
On sandy soils, potential N contamination of groundwater resources associated with intensively managed vegetables may hamper the sustainability of these systems. The objective of this study was to evaluate the interaction between irrigation system design/scheduling and N fertilization rates on zucchini production and potential N leaching. Zucchini was planted during Fall 2005 using three N fertilizer rates (73, 145, 217 kg/ha) and four different irrigation approaches. Irrigation scheduling included surface-applied drip irrigation and fertigation: SUR1 (141 mm applied) and SUR2 (266 mm) using irrigation control system (QIC) that allowed time-based irrigation (up to five events per day) and a threshold setting of 13% and 15% volumetric water content (VWC), respectively; Subsurface drip irrigation (SDI) using a QIC setting of 10% VWC (116 mm) combined with surface applied fertigation; and a control treatment with irrigation applied once daily (424 mm). Leacheate volumes were measured by drainage lysimeters. Nitrate leaching increased with irrigation rate and N rate and measured values ranged from 4 to 42 kg N/ha. Use of SDI greatly reduced nitrate leaching compared to other treatments. SDI and SUR1 treatments had no effect on yields (29 Mg/ha). However, SDI had a 15% and 479% higher water use efficiency (WUE) compared to SUR1 and the fixed irrigation duration treatment. Application of N in excess of intermediate N-rate (standard recommendation) did not increase yield but yield was reduced at the lowest N-rate. It is concluded that combining sensor-based SDI with surface applied fertigation resulted similar or higher yields while it reduced both water use and potential N leaching because of improved nutrient retention in the active root zone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.