Abstract

Andosols are the dominant soils in the Valle de Bravo basin, the origin of a significant amount of Mexico City's drinking water. The main land use is agriculture and most of the existing surface water bodies are eutrophic. Nitrogen fertilizer is used extensively. There have been very few studies on nitrate (NO3−) fate in this type of soil and region. Comprehensive laboratory studies were conducted to determine the fate of NO3− in an Andosol profile from Valle de Bravo, in order to assess the risk of water resources contamination. Nitrate retention was analysed statically (using batch experiments) and dynamically (using intact and packed soil columns) at different soil depths and its competition with Cl− was evaluated. Complementary laboratory experiments were conducted to study water transport through the columns and nitrogen transformations in the soil. In batch and columns, NO3− adsorption was linear in the range of concentrations studied and higher in the deepest soil layer. Preferential flow pathways were found in the unaltered deeper soil layers, while tillage activity in the top layer destroyed the pore continuity. In spite of the deeper soil layer's greater capacity for NO3− retention, the presence of preferential flow pathways coupled with high rainfall intensities, makes the NO3− mobile below the root zone at 1 m depth and increases the risk of groundwater contamination. The results illustrate the complexity of nitrate fate in Andosols and can be used to improve agricultural practices in the central Mexico region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.