Abstract
Although denitrification-dependent chemolithotrophic sulfur oxidizers proliferated in tsunami-deposited marine sediment with nitrate amendment, their ecophysiological roles in biogeochemical carbon transfer are not addressed. We employed time-resolved high-sensitivity 13C-bicarbonate probing of rRNA to unveil the carbon fixation and resulting trophic relationship of the nitrate-amended sediment microorganisms. Nitrate reduction and sulfur oxidation co-occurred along with significant decreases in the 13CO2 and dissolved bicarbonate concentrations for the first 4 days of the incubation, during which the denitrification-dependent sulfur-oxidizing chemolithotrophs, i.e., the Sulfurimonas sp. HDS01 and Thioalkalispira sp. HDS22 relatives, and the sulfate-reducing heterotrophs, i.e., the Desulfobulbus spp. and Desulfofustis glycolicus relatives, actively incorporated 13C. These indicated that the sulfur oxidizers and sulfate reducers were tightly associated with each other through the direct carbon transfer. Relatives of the fermentative Thalassomonas sediminis and the hydrolytic Pararheinheimera aquatica, in addition to various sulfur-cycling microorganisms, significantly assimilated 13C at day 14. Although the incorporation of 13C was not detected, a syntrophic volatile-fatty-acid oxidizer and hydrogenotrophic methanogens significantly expressed their 16S rRNA molecules at day 21, indicating the metabolic activation of these final decomposers under the latter nutrient-limited conditions. The results demonstrated the nitrate-driven trophic association of sulfur-cycling microorganisms and the subsequent microbial activation and diversification, triggering the restoration of the marine ecosystem function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.