Abstract

Field enrichments with nitrate in two spring-fed drainage lines within the riparian zone of a small woodland stream near Toronto, Ontario showed an absence of nitrate depletion. Laboratory experiments with riparian substrates overlain with nitrate enriched solutions revealed a loss of only 5–8% of the nitrate during 48 h incubation at 12°C. However, 22–24% of the initial nitrate was depleted between 24 and 48 h when a second set of substrate cores was incubated at 20°C. Short-term (3 h) incubations of fresh substrates amended with acetylene were used to estimate in situ denitrification potentials which varied from 0.05–3.19 μg N g−1 d−1 for organic and sandy sediments. Denitrification potentials were highly correlated with initial nitrate content of substrate samples implying that low nitrate levels in ground water and riparian substrates may be an important factor in controlling denitrification rates. The efficiency of nitrate removal in spring-fed drainage lines is also limited by short water residence times of < 1 h within the riparian zone. These data suggest that routes of ground water movement and substrate characteristics are important in determining nitrate depletion within stream riparian areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call