Abstract

The chemical changes (oxidation/nitrosation) of meat proteins during digestion lead to a decrease in their nutritional value. Moreover, oxidized and nitrosated amino acids are suspected to promote various human pathologies. To investigate the mechanisms and the kinetics of these endogenous protein modifications, we used a dynamic artificial digestive system (DIDGI®) that mimics the physicochemical conditions of digestion. The combined effect of meat cooking and endogenous addition of ascorbate and nitrite was evaluated on protein oxidation (by measuring carbonyl groups), protein nitrosation (by measuring nitrosamines), and proteolysis. Considerable carbonylation was observed in the digestive tract, especially under the acidic conditions of the stomach. Nitrosamines, caused by ammonia oxidation, were formed in conditions in which no nitrite was added, although the addition of nitrite in the model significantly increased their levels. Meat cooking and nitrite addition significantly decreased protein digestion. The interactions between all the changes affecting the proteins are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call