Abstract

Nitranilic acid (2,5-dihydroxy-3,6-dinitro-2,5-cyclohexadiene-1,4-dione) as a strong dibasic acid in acidic aqueous media creates the Zundel cation, H5O2(+). The structural unit in a crystal comprises (H5O2)2(+) (2,5-dihydroxy-3,6-dinitro-1,4-benzoquinonate)(2-) dihydrate where the Zundel cation reveals no symmetry, being an ideal case for studying proton dynamics and its stability. The Zundel cation and proton transfer dynamics are studied by variable-temperature X-ray diffraction, IR and solid-state NMR spectroscopy, and various quantum chemical methods, including periodic DFT calculations, ab initio molecular dynamics simulation, and quantization of nuclear motion along three fully coupled internal coordinates. The Zundel cation features a short H-bond with the O···O distance of 2.433(2) Å with an asymmetric placement of hydrogen. The proton potential is of a single well type and, due to the non-symmetric surroundings, of asymmetric shape. The formation of the Zundel cation is facilitated by the electronegative NO2 groups. The employed spectroscopic techniques supported by calculations confirm the presence of a short H-bond with a complex proton dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.