Abstract

Nitinol, a group of nearly equiatomic Ni-Ti alloys, steadily conquers new areas of application. Because of the need to keep a low profile of miniature implant devices, and considering the lack of compatibility between Nitinol superelasticity and the mechanical properties of traditional coatings, bare surfaces are of interest. In this article, an overview of our studies of bare Nitinol surfaces is presented, and the performance of coated surfaces is outlined. Together dense and porous Nitinol offer a wide array of surface topographies, suitable for attachment and migration of biological cells and tissue ingrowth. Native Nitinol surface oxides vary from amorphous to crystalline and exhibit semiconducting properties associated with better blood compatibility. Nitinol surfaces are analyzed with regard to high and lasting nickel release in vitro. Surface oxide thickness and Nitinol intermetallic particulates are discussed in relation to corrosion resistance and mechanical performance of the material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call