Abstract

Antimicrobial resistance is a growing menace, claiming millions of lives all over the world. In this context, drug repurposing is one approach gaining interest as a suitable alternative to conventional drug discovery and development. Whole-cell assays were used to screen FDA-approved drugs to identify novel antimicrobial agents active against bacterial pathogens. Following identification of nitazoxanide, its various characteristics, such as antimicrobial activity against MDR isolates, time-kill kinetics, ability to synergize with approved drugs, antibiofilm activity and ability to generate resistance in Staphylococcus aureus, were determined, followed by determination of its in vivo potential against MDR S. aureus. Nitazoxanide demonstrated a potent in vitro antistaphylococcal profile, including equipotent activity against clinical drug-resistant S. aureus and Enterococcus spp. Nitazoxanide exhibited concentration-dependent killing, significantly eradicated preformed S. aureus biofilm and S. aureus did not generate resistance to it. Nitazoxanide strongly synergized with linezolid both in vitro and in vivo against linezolid-susceptible and -resistant S. aureus, displaying superior activity to untreated control and drug-alone treatment groups. Nitazoxanide can be utilized in combination with linezolid against infections caused by linezolid-resistant S. aureus as it exhibits strong synergism in vitro and in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.