Abstract
Achieving remarkable H2 yield with significantly high H2/CO over Ni-based catalysts through partial oxidation of methane (POM) is a realistic approach to depleting the concentration of CH4 and using H2 and CO as synthetic feedstock. This study examined Ni catalysts on titania-zirconia for methane conversion via POM at 600 °C and atmospheric pressure. The addition of strontium to the catalyst was explored to improve its performance. Catalysts were characterized by X-ray diffraction, Raman-infrared-UV-vis spectroscopy, and Temperature-programmed reduction-desorption techniques (TPR, TPD). 2.5 wt% Sr addition induced the formation of the highest concentration of extreme basic sites. Interestingly, over the unpromoted catalyst, active sites are majorly generated by hardly reducible NiO species whereas upon 2.5 wt% promoted Sr promotional addition, most of active sites are derived by easily reducible NiO species. 45% CH4 conversion and 47% H2 yield with H2/CO = 3.5 were achieved over 2.5 wt% Sr promoted 5Ni/30TiO2 + ZrO2 catalyst. These results provide insight into the role of basic sites in enhancing activity through switching indirect pathways over direct pathways for POM. Further process optimization was carried out in the range of 10 000-22 000 SV, 0.35-0.75 O2/CH4, and 600-800 °C reaction temperature over 5Ni2.5Sr/30TiO2 + ZrO2 by using central composite design under response surface methodology. The optimum activity as high as ∼88% CH4 conversion, 86-87% yield of H2, and 2.92H2/CO were predicted and experimentally validated at 800 °C reaction temperature, 0.35O2/CH4 ratio, and 10 000 space velocity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.