Abstract

Some removable medical devices such as catheters and cardiovascular biomaterials require antiadhesive properties towards both prokaryotic and eukaryotic cells in order to prevent the tissues from infections upon implantation and, from alteration upon removal. In order to inhibit cell adhesion, we developed ultrathin hydrated Layer-by-Layer (LbL) coatings composed of biocompatible polyelectrolytes, namely chondroitin sulfate A (CSA) and poly-l-lysine (PLL). The coatings were crosslinked with genipin (GnP), a natural and biocompatible crosslinking agent, to increase their resistance against environmental changes. In order to confer antibacterial activity to the coatings, we proceeded to the electrostatically-driven immobilization of nisin Z, an antimicrobial peptide (AMP) active against gram-positive bacteria. The nisin-enriched coatings had a significantly increased anti-proliferative impact on fibroblasts, as well as a strong contact-killing activity against Staphylococcus aureus in the short and long term.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call