Abstract

To improve the process for the production of milk-derived antihypertensive peptides, including a 12-residue peptide (FFVAPFPECVGK) from αS1-casein. A synthetic gene encoding this peptide was cloned within the pediocin operon, replacing the nucleic acid sequence encoding the mature pediocin peptide (papA) and resulting in a translational fusion between the pediocin leader peptide and the 12-residue hypotensive (C-12) peptide. The recombinant operon was subsequently cloned immediately downstream of the nisA promoter to allow for inducible gene expression within Streptococcus thermophilus ST128, Lactococcus lactis subsp. lactis ML3 and Lactobacillus casei C2. RT-PCR was used to confirm recombinant gene expression in complex medium; and SDS-PAGE analysis showed that the pediocin secretion machinery, encoded by papC and papD, allowed for secretion of the recombinant peptide from both L. lactis ML3 and L. casei C2 in a chemically defined medium. The use of a nisin as a "food-grade" inducer molecule, and generally-regarded-as-safe LAB species suggests that this system could be used for the production of functional food ingredients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call