Abstract

Nisin is a cationic antimicrobial peptide used as a natural food preservative against gram-positive bacteria. However, nisin is degraded following interaction with food components. Here, we report the first use of Carboxymethylcellulose (CMC), a versatile and affordable food additive, to protect nisin and extend its antimicrobial activity. First, we optimized the methodology by considering the effect of nisin:CMC ratio, pH, and, especially, the degree of substitution of CMC. In particular, we show here how these parameters affected the size, charge, and, notably, the encapsulation efficiency of these nanomaterials. This way, optimized formulations contained over 60 % w/w in nisin while encapsulating ∼90 % of the nisin used. We then show that these new nanomaterials inhibited the growth of Staphylococcus aureus, a major foodborne pathogen, using milk as a representative food matrix. Remarkably, this inhibitory effect was observed with one-tenth of the concentration of nisin currently used in dairy products. We believe that the combination of the affordability of CMC, flexibility and simplicity of preparation, and the ability to inhibit the growth of food pathogens, makes these nisin:CMC PIC nanoparticles an ideal platform to underpin new nisin formulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.