Abstract

NiO/Ce0.8Sm0.2O1.9 (NiO/SDC, 65wt.% NiO) composite powders were synthesized by a glycine-nitrate process (GNP) to fabricate Ni/SDC anode-supported solid oxide fuel cell (SOFC). The results show that the composite powders are composed of single cubic phases of NiO and SDC and have a particle size in nanometer range. NiO/SDC ceramics were prepared from the NiO/SDC powders and were converted into Ni/SDC cermets by reduction in H2, which were employed as anode materials for SOFC with SDC electrolyte. It is shown that Ni/SDC cermets from the NiO/SDC composite powders by the GNP have porous and homogeneous microstructures and show good electrical conductivity. A single SOFC based on Ni/SDC anode with about 50µm SDC electrolyte film and about 80µm La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode was constructed. Open circuit voltage (OCV) of the cell is about 0.8V and maximum power density is 361.42 and 394.78 mWcm-2 at 750 and 800°C, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call