Abstract

A normal-metal/insulator/superconductor (NIS) tunnel junction can be applied to cool electrons by biasing the junction suitably with external voltage. Two NIS junctions in series can form an efficient microrefrigerator because of the symmetry with bias voltage. Our SINIS microrefrigerator has been capable of reaching electronic temperatures of about 100 mK starting from 300 mK. To achieve appreciable refrigeration of the underlying lattice, the microrefrigerator must be thermally decoupled from the bulk substrate. We have demonstrated experimentally the reduction of lattice temperature by 23 mK at 180 mK by extending the normal electrode on a thin dielectric membrane with four suspended bridges. Methods to improve the efficiency of refrigeration, e.g., by using a superconductor with a large energy gap and/or by increasing the number of tunnel junctions, are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.