Abstract

AbstractMethods for noninvasive brain imaging are highly desirable to study brain structures in neuroscience. Two‐photon fluorescence microscopy (2PFM) with near‐infrared (NIR) light excitation is a relatively noninvasive approach commonly used to study brain with high spatial resolution and large imaging depth. However, most of the current studies require cranial window implantation or skull‐thinning methods due to attenuation of excitation light. 2PFM through intact mouse skull is challenging due to strong scattering induced by skull bone. Herein, NIR‐II light excitable single‐chain conjugated polymer dots (CPdots) with bright fluorescence in NIR‐I region (peak at ≈725 nm and quantum yield of 20.6 ± 1.0%) are developed for deep in vivo two‐photon fluorescence (2PF) imaging of intact mouse brain. The synthesized CPdots exhibit good biocompatibility, high photostability, and large two‐photon absorption cross section. The CPdots allow 2PF images acquired upon excitation at 800, 1040 and 1200 nm with the highest signal‐to‐background ratio of 208 demonstrated for 1200 nm excitation. Moreover, a 3D reconstruction of the brain blood vessel network is obtained with a large vertical depth of 400 µm through intact skull. This work demonstrates great potential of bright NIR fluorophores for in vivo deep tissue imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.