Abstract

To illustrate the effect of microwave radiation on the morphologies and electrochemical properties electrode materials, Ni-rich oxide LiNi0.85Co0.05Mn0.1O2 was identified and prepared from the corresponding precursors synthesized under different reaction conditions. The results suggest that the resultant LiNi0.85Co0.05Mn0.1O2 morphology controllably depends on its corresponding synthetic method, which will affect its electrochemical property accordingly. The electrode material from microwave-assisted co-precipitation followed by a hydrothermal modification (NCM-WH) possesses a pure α-NaFeO2 phase and regular spheroidal morphology with a proper size over 10 μm, which exhibits more excellent discharge capacity of ca. 150 mAh g−1 after 200 cycles and better capacity retention of 88.3% than those from microwave-assisted co-precipitation method (NCM-W) or normal co-precipitation method (NCM-N) only. The improved electrochemical properties are confirmed from their ordered phase structure, regular spheroidal morphology and high tap density, which results in lower Li/Ni cation mixing, faster solid-state ion diffusion, higher electrochemical reversibility and better structure stability during the long-tern cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.