Abstract
The primary treatment for malignant tumors remains to be surgical removal of the diseased tissue. The presence or absence of residual diseased tissue at the tumor margin is the strongest predictor of postoperative prognosis and recurrence. Accordingly, reliance on the ability of surgeons to visually distinguish diseased tissue from healthy tissue unambiguously in real time is crucial. Near infrared-I (NIRI) fluorescence-emitting targeting biomolecular constructs such as anticancer antibody-fluorophore conjugates, namely cetuximab-IRDye® 800CW (CTB-IRDye® 800CW), are FDA-approved for clinical trial usage in the fluorescence-guided resection of diseased tissue due to affording improved direct visualization of tumor tissue when compared to the use of either the unaided eye under standard white light illumination (WLI) surgical techniques or non-targeting fluorophores. Unfortunately, though helpful, CTB-IRDye® 800CW affords limited (i) identification of diseased tissue and (ii) tumor margin delineation, because the immunoconjugate generates suboptimal tumor-to-background ratios (TBRs) as a result of its spectral/photophysical profiles poorly aligning with the fixed optical windows of pre-/clinical setups. As such, CTB-IRDye® 800CW is more prone to affording incomplete resection compared to if TBRs were higher due to otherwise. To aid in accurately identifying deep-seated diseased tissue, photoacoustic (PA) tomography has been implemented alongside CTB-IRDye® 800CW to achieve PA signals that could result in higher TBRs. However, in clinical trial practice, using IRDye® 800CW for PA imaging also yields subpar TBRs due to it affording low PA signals. To overcome such limitations, we developed NIRDye 812, a structurally-modified topological equivalent of IRDye® 800CW, to confer it the capability to yield both higher TBRs and superior PA signal than that of the equivalent CTB-conjugate and fluorophore IRDye® 800CW itself, respectively. To do so, we substituted the oxygen atom at its meso-position with a sulfur atom. CTB-NIRDye 812 demonstrated a red-shifted absorption wavelength at 796nm and a peak NIR-I fluorescence emission wavelength at 820nm, which better dovetails with the fixed windows of preinstalled fixed emission filters within commercial pre-/clinical NIR-I fluorescence imaging instruments. Overall, CTB-NIRDye 812 provided a∼2-fold increase in TBRs compared to those of CTB-IRDye® 800CW in vivo. Also, NIRDye 812 displayed an ∼60% higher PA signal than that of IRDye® 800CW. Collectively, we achieved our goal of improving upon the spectral/photophysical and PA properties of IRDye® 800CW via introducing a subtle modification to its electronic core such that its CTB immunoconjugate could potentially allow for fast track or breakthrough designation by the FDA due to its near-identical structure displaying considerably improved efficacy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry and Photobiology B: Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.